Direct Georeferencing UAV-SfM in High-Relief Topography: Accuracy Assessment and Alternative Ground Control Strategies along Steep Inaccessible Rock Slopes

Steep rock slopes present key opportunities and challenges within Earth science applications. Due to partial or complete inaccessibility, high-precision surveys of these high-relief landscapes remain a challenge. Direct georeferencing (DG) of unoccupied aerial vehicles (UAVs) with advanced onboard G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-01, Vol.14 (3), p.490
Hauptverfasser: Nesbit, Paul Ryan, Hubbard, Stephen M., Hugenholtz, Chris H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steep rock slopes present key opportunities and challenges within Earth science applications. Due to partial or complete inaccessibility, high-precision surveys of these high-relief landscapes remain a challenge. Direct georeferencing (DG) of unoccupied aerial vehicles (UAVs) with advanced onboard GNSS receivers presents opportunities to generate high-resolution 3D datasets without ground-based access to the study area. However, recent research has revealed large vertical errors using DG that may prove problematic in near-vertical terrain. To address these concerns, we examined more than 75 photogrammetric UAV-datasets with various imaging angles (nadir, oblique, and combinations) and ground control scenarios, including DG, along a steep slope exposure. Results demonstrate that mean errors in DG scenarios are up to 0.12 m higher than datasets using integrated georeferencing with well-distributed GCPs. Inclusion of GCPs greatly reduced mean error values but had limited influence on precision (
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14030490