Applications of OHAM and MOHAM for Fractional Seventh-Order SKI Equations

In this article, a comparative study between optimal homotopy asymptotic method and multistage optimal homotopy asymptotic method is presented. These methods will be applied to obtain an approximate solution to the seventh-order Sawada-Kotera Ito equation. The results of optimal homotopy asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics 2021-12, Vol.2021, p.1-8
Hauptverfasser: Biazar, Jafar, Safaei, Saghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a comparative study between optimal homotopy asymptotic method and multistage optimal homotopy asymptotic method is presented. These methods will be applied to obtain an approximate solution to the seventh-order Sawada-Kotera Ito equation. The results of optimal homotopy asymptotic method are compared with those of multistage optimal homotopy asymptotic method as well as with the exact solutions. The multistage optimal homotopy asymptotic method relies on optimal homotopy asymptotic method to obtain an analytic approximate solution. It actually applies optimal homotopy asymptotic method in each subinterval, and we show that it achieves better results than optimal homotopy asymptotic method over a large interval; this is one of the advantages of this method that can be used for long intervals and leads to more accurate results. As far as the authors are aware that multistage optimal homotopy asymptotic method has not been yet used to solve fractional partial differential equations of high order, we have shown that this method can be used to solve these problems. The convergence of the method is also addressed. The fractional derivatives are described in the Caputo sense.
ISSN:1110-757X
1687-0042
DOI:10.1155/2021/6898282