Improving Real-Time Position Estimation Using Correlated Noise Models

We provide algorithms for inferring GPS (Global Positioning System) location and for quantifying the uncertainty of this estimate in real time. The algorithms are tested on GPS data from locations in the Southern Hemisphere at four significantly different latitudes. In order to rank the algorithms,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-10, Vol.20 (20), p.5913
Hauptverfasser: Martin, Andrew, Parry, Matthew, Soundy, Andy W. R., Panckhurst, Bradley J., Brown, Phillip, Molteno, Timothy C. A., Schumayer, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide algorithms for inferring GPS (Global Positioning System) location and for quantifying the uncertainty of this estimate in real time. The algorithms are tested on GPS data from locations in the Southern Hemisphere at four significantly different latitudes. In order to rank the algorithms, we use the so-called log-score rule. The best algorithm uses an Ornstein–Uhlenbeck (OU) noise model and is built on an enhanced Kalman Filter (KF). The noise model is capable of capturing the observed autocorrelated process noise in the altitude, latitude and longitude recordings. This model outperforms a KF that assumes a Gaussian noise model, which under-reports the position uncertainties. We also found that the dilution-of-precision parameters, automatically reported by the GPS receiver at no additional cost, do not help significantly in the uncertainty quantification of the GPS positioning. A non-learning method using the actual position measurements and employing a constant uncertainty does not even converge to the correct position. Inference with the enhanced noise model is suitable for embedded computing and capable of achieving real-time position inference, can quantify uncertainty and be extended to incorporate complementary sensor recordings, e.g., from an accelerometer or from a magnetometer, in order to improve accuracy. The algorithm corresponding to the augmented-state unscented KF method suggests a computational cost of O(dx2dt), where dx is the dimension of the augmented state-vector and dt is an adjustable, design-dependent parameter corresponding to the length of “past values” one wishes to keep for re-evaluation of the model from time to time. The provided algorithm assumes dt=1. Hence, the algorithm is likely to be suitable for sensor fusion applications.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20205913