Kinetic and microstructural studies of Cp2ZrCl2 and Cp2HfCl2-catalyzed oligomerization of higher α-olefins in mPAO oil base stocks production

Herein a quenched-flow kinetic technique was applied to calculate the rate constants of 1-hexene and 1-octene oligomerization catalyzed by the Cp2ZrCl2 and Cp2HfCl2/MAO catalyst systems, and subsequently a mechanism for the higher α-olefin oligomerization reaction was proposed. The oligomerization r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polyolefins journal 2021-01, Vol.8 (1), p.31-40
Hauptverfasser: Ahad Hanifpour, Mahdi Hashemzadeh Gargari, Mohammad Reza Rostami Darounkola, Zahra Kalantari, Naeimeh Bahri-Laleh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein a quenched-flow kinetic technique was applied to calculate the rate constants of 1-hexene and 1-octene oligomerization catalyzed by the Cp2ZrCl2 and Cp2HfCl2/MAO catalyst systems, and subsequently a mechanism for the higher α-olefin oligomerization reaction was proposed. The oligomerization results showed that Zr-based catalyst in the oligomerization of 1-octene had the highest activity of 17 in comparison to Hfbased one with an activity value of 15 g oligomer/(mmolCat.h)). According to the obtained results, increasing monomer length led to a shift in molecular weight and polydispersity index value (Mw/Mn) to lower values. Furthermore, the microstructure-viscosity relationship was followed by the calculation of branching ratio and short-chain branching percentage. The obtained results revealed that, the oligomers synthesized by the Cp2HfCl2 catalyst had lower short chain branching ratio value and short-chain branching percentages. According to the kinetic results, the initiation rate constant (ki) of Zr-based catalyst was higher than that of Hf-based catalyst, and the order of calculated propagation rate constants was Zr>Hf for both the 1-hexene and 1-octene-based oligomerizations.
ISSN:2322-2212
2345-6868
DOI:10.22063/poj.2020.2802.1170