Effects of Lactiplantibacillus plantarum on oxidative stress, mitophagy, and NLRP3 inflammasome activation in broiler breast meat
Poultry meat has a high polyunsaturated fatty acids content, making it vulnerable to oxidative stress. Mitophagy participates in the regulation of oxidative stress and the nucleotide-binding and oligomerization domain (NOD)-like receptor family as well as pyrin domain-containing protein 3 (NLRP3) in...
Gespeichert in:
Veröffentlicht in: | Poultry science 2023-12, Vol.102 (12), p.103128-103128, Article 103128 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poultry meat has a high polyunsaturated fatty acids content, making it vulnerable to oxidative stress. Mitophagy participates in the regulation of oxidative stress and the nucleotide-binding and oligomerization domain (NOD)-like receptor family as well as pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Lactiplantibacillus plantarum P8 (P8) is a probiotic strain with an antioxidant capacity. In the present study, we investigated the effects of P8 on oxidative stress, mitochondrial function, mitophagy, and NLRP3 inflammasome in the breast meat of oxidatively stressed broilers. Four hundred 1-day-old male broilers were assigned to a 2 × 2 factorial design with 2 P8 levels (0 or 1 × 108 cfu/g), either with or without dexamethasone (DEX) injection, for a 21-day experimental period. DEX was injected intraperitoneally once daily from d 16 to 21. The breast meat was collected on d 21. The results showed that P8 supplementation decreased malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and activated the Keap1-Nrf2 pathway in DEX-injected broilers. Moreover, P8 supplementation downregulated mitochondrial DNA (mtDNA) copy number and increased the expressions of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), silent information regulator 1 (SIRT1), mitochondrial fusion protein 1 (Mfn1), and optic atrophy protein 1 (OPA1) in DEX-treated broilers. In addition, the decreased mitophagy level in DEX-treated broilers was elevated with P8 supplementation, as reflected by the increased gene expression of autophagy-related gene 5 (ATG5), Bcl-2-interacting protein (Becline-1), Parkin, PTEN-induced kinase 1 (PINK1), light chain 3 II (LC3II)/LC31, and the protein expression of Parkin as well as decreased p62 expression. In addition, P8 supplementation inhibited NLRP3 inflammasome activation by decreasing the transcription of NLRP3, IL-18, cysteinyl aspartate-specific proteinase-1 (Caspase-1), and the expression of NLRP3 and IL-18 in DEX-treated broilers. In conclusion, dietary P8 supplementation alleviates oxidative stress, improves mitophagy, and inhibits NLRP3 inflammasome activation in the breast meat of oxidatively stressed broilers. |
---|---|
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.1016/j.psj.2023.103128 |