Viability of Neural Networks for Core Technologies for Resource-Scarce Languages
In this paper, the viability of neural network implementations of core technologies (the focus of this paper is on text technologies) for 10 resource-scarce South African languages is evaluated. Neural networks are increasingly being used in place of other machine learning methods for many natural l...
Gespeichert in:
Veröffentlicht in: | Information (Basel) 2020-01, Vol.11 (1), p.41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the viability of neural network implementations of core technologies (the focus of this paper is on text technologies) for 10 resource-scarce South African languages is evaluated. Neural networks are increasingly being used in place of other machine learning methods for many natural language processing tasks with good results. However, in the South African context, where most languages are resource-scarce, very little research has been done on neural network implementations of core language technologies. In this paper, we address this gap by evaluating neural network implementations of four core technologies for ten South African languages. The technologies we address are part of speech tagging, named entity recognition, compound analysis and lemmatization. Neural architectures that performed well on similar tasks in other settings were implemented for each task and the performance was assessed in comparison with currently used machine learning implementations of each technology. The neural network models evaluated perform better than the baselines for compound analysis, are viable and comparable to the baseline on most languages for POS tagging and NER, and are viable, but not on par with the baseline, for Afrikaans lemmatization. |
---|---|
ISSN: | 2078-2489 2078-2489 |
DOI: | 10.3390/info11010041 |