Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia

Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-03, Vol.12 (1), p.1645-14, Article 1645
Hauptverfasser: Goldfarb, Adam N., Freeman, Katie C., Sahu, Ranjit K., Elagib, Kamaleldin E., Holy, Maja, Arneja, Abhinav, Polanowska-Grabowska, Renata, Gru, Alejandro A., White, Zollie, Khalil, Shadi, Kerins, Michael J., Ooi, Aikseng, Leitinger, Norbert, Luckey, Chance John, Delehanty, Lorrie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI. Debilitating anemias in chronic diseases can result from deficient iron delivery to red cell precursors. Here, the authors show how this deficiency damages the cytoskeletal framework of progenitor cells and identify a targeted strategy for cytoskeletal repair, leading to anemia correction.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21938-2