Hypothesized biological mechanisms by which exercise-induced irisin mitigates tumor proliferation and improves cancer treatment outcomes
Exercise has been linked to a significant decrease in cancer pathogenesis. Irisin is an exercise-induced myokine that is released from the skeletal muscle upon cleavage of the membrane of fibronectin type III domain-containing protein 5. Exercise has been revealed to raise irisin concentration in th...
Gespeichert in:
Veröffentlicht in: | MGM Journal of Medical Sciences 2021-10, Vol.8 (4), p.452-458 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exercise has been linked to a significant decrease in cancer pathogenesis. Irisin is an exercise-induced myokine that is released from the skeletal muscle upon cleavage of the membrane of fibronectin type III domain-containing protein 5. Exercise has been revealed to raise irisin concentration in the blood and muscle cells via the upregulation of peroxisome proliferator receptor γ coactivator-1α expression. Exercise-induced irisin reduces the risk of numerous cancers by burning excess body fat. We hypothesized that exercise-induced irisin may mitigate tumor proliferation by inducing apoptosis and improving cancer treatment outcomes via modulating several signaling and metabolic pathways, mainly by increasing the phosphorylation of adenosine monophosphate-activated protein kinase and acetyl-CoA-carboxylase, via deactivating the phosphatidylinositol 3-kinase/protein kinase B Snail signaling pathway, by upregulating the apoptosis pathway through the inhibition of epithelial-mesenchymal transition and via stimulating caspase activity. |
---|---|
ISSN: | 2347-7946 2347-7962 |
DOI: | 10.4103/mgmj.mgmj_67_21 |