Piezoresistive carbon-containing ceramic nanocomposites – A review
The present review introduces a class of ceramic nanocomposites that contain carbon as disperse phases and exhibit piezoresistive behavior. After a brief introduction in which the piezoresistive effect is described and selected principles for the design of piezoresistive sensing devices are highligh...
Gespeichert in:
Veröffentlicht in: | Open ceramics 2021-03, Vol.5, p.100057, Article 100057 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present review introduces a class of ceramic nanocomposites that contain carbon as disperse phases and exhibit piezoresistive behavior. After a brief introduction in which the piezoresistive effect is described and selected principles for the design of piezoresistive sensing devices are highlighted, various carbon-containing ceramic nanocomposites are presented and discussed in the light of their preparative access as well as their piezoresistive behavior. Emphasis is put on carbon-containing ceramic nanocomposites in which the dispersed carbon phase is generated in situ during a thermal treatment process, which allows tunable carbon contents and crystallinities, along with a highly homogeneous dispersion of the carbon phase in the ceramic matrix. The piezoresistive carbon-containing ceramic nanocomposites presented here are furthermore critically discussed within the context of their potential use as force/strain/pressure sensing materials for applications at ultrahigh temperatures and in hostile environments.
[Display omitted] |
---|---|
ISSN: | 2666-5395 2666-5395 |
DOI: | 10.1016/j.oceram.2021.100057 |