Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation

Epidermal growth factor is an excellent drug for promoting wound healing; however, its conventional administration strategies are associated with pharmacodynamic challenges, such as low transdermal permeability, reduction, and receptor desensitization. Here, we develop a microneedle-based self-power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-11, Vol.13 (1), p.6908-13, Article 6908
Hauptverfasser: Yang, Yuan, Luo, Ruizeng, Chao, Shengyu, Xue, Jiangtao, Jiang, Dongjie, Feng, Yun Hao, Guo, Xin Dong, Luo, Dan, Zhang, Jiaping, Li, Zhou, Wang, Zhong Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epidermal growth factor is an excellent drug for promoting wound healing; however, its conventional administration strategies are associated with pharmacodynamic challenges, such as low transdermal permeability, reduction, and receptor desensitization. Here, we develop a microneedle-based self-powered transcutaneous electrical stimulation system (mn-STESS) by integrating a sliding free-standing triboelectric nanogenerator with a microneedle patch to achieve improved epidermal growth factor pharmacodynamics. We show that the mn-STESS facilitates drug penetration and utilization by using microneedles to pierce the stratum corneum. More importantly, we find that it converts the mechanical energy of finger sliding into electricity and mediates transcutaneous electrical stimulation through microneedles. We demonstrate that the electrical stimulation applied by mn-STESS acts as an “adjuvant” that suppresses the reduction of epidermal growth factor by glutathione and upregulates its receptor expression in keratinocyte cells, successfully compensating for receptor desensitization. Collectively, this work highlights the promise of self-powered electrical adjuvants in improving drug pharmacodynamics, creating combinatorial therapeutic strategies for traditional drugs. The use of epidermal growth factor for wound healing is limited by transdermal permeability, reduction, and receptor desensitization. Here the authors develop a microneedle-based self-powered transcutaneous electrical stimulation system to overcome these challenges.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-34716-5