Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts

Neural progenitor cell (NPC) transplantation has high therapeutic potential in neurological disorders. Functional restoration may depend on the formation of reciprocal connections between host and graft. While it has been reported that axons extending out of neural grafts in the brain form contacts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-01, Vol.9 (1), p.84-84, Article 84
Hauptverfasser: Dulin, Jennifer N., Adler, Andrew F., Kumamaru, Hiromi, Poplawski, Gunnar H. D., Lee-Kubli, Corinne, Strobl, Hans, Gibbs, Daniel, Kadoya, Ken, Fawcett, James W., Lu, Paul, Tuszynski, Mark H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural progenitor cell (NPC) transplantation has high therapeutic potential in neurological disorders. Functional restoration may depend on the formation of reciprocal connections between host and graft. While it has been reported that axons extending out of neural grafts in the brain form contacts onto phenotypically appropriate host target regions, it is not known whether adult, injured host axons regenerating into NPC grafts also form appropriate connections. We report that spinal cord NPCs grafted into the injured adult rat spinal cord self-assemble organotypic, dorsal horn-like domains. These clusters are extensively innervated by regenerating adult host sensory axons and are avoided by corticospinal axons. Moreover, host axon regeneration into grafts increases significantly after enrichment with appropriate neuronal targets. Together, these findings demonstrate that injured adult axons retain the ability to recognize appropriate targets and avoid inappropriate targets within neural progenitor grafts, suggesting that restoration of complex circuitry after SCI may be achievable. Understanding how transplanted cells interact with the host nervous system will be important for cell based neural regeneration approaches. Here, the authors study the sensory fate of neural progenitor cell grafts transplanted to the injured spinal cord, and show that host axons retain the ability to distinguish appropriate and inappropriate graft targets.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-02613-x