Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
Let $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear f...
Gespeichert in:
Veröffentlicht in: | Karpats'kì matematinì publìkacìï 2022-11, Vol.14 (2), p.371-387 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear forms on $l_{\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations. |
---|---|
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.14.2.371-387 |