On Some Normality-Like Properties and Bishop's Property (β) for a Class of Operators on Hilbert Spaces

We prove some further properties of the operator T∈[nQN] (n-power quasinormal, defined in Sid Ahmed, 2011). In particular we show that the operator T∈[nQN] satisfying the translation invariant property is normal and that the operator T∈[nQN] is not supercyclic provided that it is not invertible. Als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2012, Vol.2012 (2012), p.952-971-176
1. Verfasser: Ould Ahmed Mahmoud, Sid Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove some further properties of the operator T∈[nQN] (n-power quasinormal, defined in Sid Ahmed, 2011). In particular we show that the operator T∈[nQN] satisfying the translation invariant property is normal and that the operator T∈[nQN] is not supercyclic provided that it is not invertible. Also, we study some cases in which an operator T∈[2QN] is subscalar of order m; that is, it is similar to the restriction of a scalar operator of order m to an invariant subspace.
ISSN:0161-1712
1687-0425
DOI:10.1155/2012/975745