On Some Normality-Like Properties and Bishop's Property (β) for a Class of Operators on Hilbert Spaces
We prove some further properties of the operator T∈[nQN] (n-power quasinormal, defined in Sid Ahmed, 2011). In particular we show that the operator T∈[nQN] satisfying the translation invariant property is normal and that the operator T∈[nQN] is not supercyclic provided that it is not invertible. Als...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2012, Vol.2012 (2012), p.952-971-176 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove some further properties of the operator T∈[nQN] (n-power quasinormal, defined in Sid Ahmed, 2011). In particular we show that the operator T∈[nQN] satisfying the translation invariant property is normal and that the operator T∈[nQN] is not supercyclic provided that it is not invertible. Also, we study some cases in which an operator T∈[2QN] is subscalar of order m; that is, it is similar to the restriction of a scalar operator of order m to an invariant subspace. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2012/975745 |