Different-distance sets in a graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$. The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in combinatorics and optimization 2019-12, Vol.4 (2), p.151-171
Hauptverfasser: Jason T. Hedetniemi, Stephen T. Hedetniemi, Renu C. Laskar, Henry Martyn Mulder4
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$. The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set. We prove that a different-distance set induces either a special type of path or an independent set. We present properties of different-distance sets, and consider the different-distance numbers of paths, cycles, Cartesian products of bipartite graphs, and Cartesian products of complete graphs. We conclude with some open problems and questions.
ISSN:2538-2128
2538-2136
DOI:10.22049/CCO.2019.26467.1115