Tokorhabditis n. gen. (Rhabditida, Rhabditidae), a comparative nematode model for extremophilic living

Life in extreme environments is typically studied as a physiological problem, although the existence of extremophilic animals suggests that developmental and behavioral traits might also be adaptive in such environments. Here, we describe a new species of nematode, Tokorhabditis tufae , n. gen., n....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-08, Vol.11 (1), p.16470-15, Article 16470
Hauptverfasser: Kanzaki, Natsumi, Yamashita, Tatsuya, Lee, James Siho, Shih, Pei-Yin, Ragsdale, Erik J., Shinya, Ryoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Life in extreme environments is typically studied as a physiological problem, although the existence of extremophilic animals suggests that developmental and behavioral traits might also be adaptive in such environments. Here, we describe a new species of nematode, Tokorhabditis tufae , n. gen., n. sp., which was discovered from the alkaline, hypersaline, and arsenic-rich locale of Mono Lake, California. The new species, which offers a tractable model for studying animal-specific adaptations to extremophilic life, shows a combination of unusual reproductive and developmental traits. Like the recently described sister group Auanema , the species has a trioecious mating system comprising males, females, and self-fertilizing hermaphrodites. Our description of the new genus thus reveals that the origin of this uncommon reproductive mode is even more ancient than previously assumed, and it presents a new comparator for the study of mating-system transitions. However, unlike Auanema and almost all other known rhabditid nematodes, the new species is obligately live-bearing, with embryos that grow in utero, suggesting maternal provisioning during development. Finally, our isolation of two additional, molecularly distinct strains of the new genus—specifically from non-extreme locales—establishes a comparative system for the study of extremophilic traits in this model.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95863-1