Altered salivary microbiota profile in patients with abdominal aortic aneurysm

Evidence suggests that the DNA of oral pathogens is detectable in the dilated aortic tissue of abdominal aortic aneurysm (AAA), one of the most fatal cardiovascular diseases. However, the association between oral microbial homeostasis and aneurysm formation remains largely unknown. In this study, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-12, Vol.9 (12), p.e23040-e23040, Article e23040
Hauptverfasser: Lin, Wen-Zhen, Chen, Bo-Yan, Qiu, Peng, Zhou, Lu-Jun, Li, Yu-Lin, Du, Lin-Juan, Liu, Yuan, Wang, Yong-Li, Zhu, Hong, Wu, Xiao-Yu, Liu, Xiaobing, Duan, Sheng-Zhong, Zhu, Ya-Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence suggests that the DNA of oral pathogens is detectable in the dilated aortic tissue of abdominal aortic aneurysm (AAA), one of the most fatal cardiovascular diseases. However, the association between oral microbial homeostasis and aneurysm formation remains largely unknown. In this study, a cohort of individuals, including 53 AAA patients and 30 control participants (CTL), was recruited for salivary microbiota investigation by 16S rRNA gene sequencing and bioinformatics analysis. Salivary microbial diversity was decreased in AAA compared with CTL, and the microbial structures were significantly separated between the two groups. Additionally, significant taxonomic and functional changes in the salivary microbiota of AAA participants were observed. The genera Streptococcus and Gemella were remarkably enriched, while Selenomonas, Leptotrichia, Lautropia and Corynebacterium were significantly depleted in AAA. Co-occurrence network analysis showed decreased potential interactions among the differentially abundant microbial genera in AAA. A machine-learning model predicted AAA using the combination of 5 genera and 14 differentially enriched functional pathways, which could distinguish AAA from CTL with an area under the receiver-operating curve of 90.3 %. Finally, 16 genera were found to be significantly positively correlated with the morphological parameters of AAA. Our study is the first to show that AAA patients exhibit oral microbial dysbiosis, which has high predictive power for AAA, and the over-representation of specific salivary bacteria may be associated with AAA disease progression. Further studies are needed to better understand the function of putative oral bacteria in the etiopathogenesis of AAA. Host microbial dysbiosis has recently been linked to AAA as a possible etiology. To our knowledge, studies of the oral microbiota and aneurysms remain scarce, although previous studies have indicated that the DNA of some oral pathogens is detectable in aneurysms by PCR method. We take this field one step further by investigating the oral microbiota composition of AAA patients against control participants via high-throughput sequencing technologies and unveiling the potential microbial biomarker associated with AAA formation. Our study will provide new insights into AAA etiology, treatment and prevention from a microecological perspective and highlight the effects of oral microbiota on vascular health.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e23040