Steganography with High Reconstruction Robustness: Hiding of Encrypted Secret Images

As one of the important methods to protect information security, steganography can ensure the security of data in the process of information transmission, which has attracted much attention in the information security community. However, many current steganography algorithms are not sufficiently res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-08, Vol.10 (16), p.2934
Hauptverfasser: Zhu, Xishun, Lai, Zhengliang, Zhou, Nanrun, Wu, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one of the important methods to protect information security, steganography can ensure the security of data in the process of information transmission, which has attracted much attention in the information security community. However, many current steganography algorithms are not sufficiently resistant to recent steganalysis algorithms, such as deep learning-based steganalysis algorithms. In this manuscript, a new steganography algorithm, based on residual networks and pixel shuffle, is proposed, which combines image encryption and image hiding, named Resen-Hi-Net, an algorithm that first encrypts a secret image and then hides it in a carrier image to produce a meaningful container image. The proposed Resen-Hi-Net has the advantages of both image encryption and image hiding. The experimental results showed that the proposed Resen-Hi-Net could realize both image encryption and image hiding; the visual container image quality was as high as 40.19 dB on average in PSNR to reduce the possibility of being attacked, and the reconstructed secret image quality was also good enough (34.39 dB on average in PSNR). In addition, the proposed Resen-Hi-Net has a strong ability to resist destructive attacks and various steganographic analyses.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10162934