Riemann solitons on para-Sasakian geometry

The goal of the present article is to investigate almost Riemann soliton and gradient almost Riemann soliton on 3-dimensional para-Sasakian manifolds. At first, it is proved that if $(g, Z,\lambda)$ is an almost Riemann soliton on a para-Sasakian manifold $M^3$, then it reduces to a Riemann soliton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Karpats'kì matematinì publìkacìï 2022-11, Vol.14 (2), p.395-405
Hauptverfasser: De, K., De, U.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of the present article is to investigate almost Riemann soliton and gradient almost Riemann soliton on 3-dimensional para-Sasakian manifolds. At first, it is proved that if $(g, Z,\lambda)$ is an almost Riemann soliton on a para-Sasakian manifold $M^3$, then it reduces to a Riemann soliton and $M^3$ is of constant sectional curvature $-1$, provided the soliton vector $Z$ has constant divergence. Besides these, we prove that if $Z$ is pointwise collinear with the characteristic vector field $\xi$, then $Z$ is a constant multiple of $\xi$ and the manifold is of constant sectional curvature $-1$. Moreover, the almost Riemann soliton is expanding. Furthermore, it is established that if a para-Sasakian manifold $M^3$ admits gradient almost Riemann soliton, then $M^3$ is locally isometric to the hyperbolic space $H^{3}(-1)$. Finally, we construct an example to justify some results of our paper.
ISSN:2075-9827
2313-0210
DOI:10.15330/cmp.14.2.395-405