With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel hotspots and coldspots
Species-habitat associations are correlative, can be quantified, and used for powerful inference. Nowadays, Species Distribution Models (SDMs) play a big role, e.g. using Machine Learning and AI algorithms, but their best-available technical opportunities remain still not used for their potential e....
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-03, Vol.14 (1), p.5204-5204, Article 5204 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Species-habitat associations are correlative, can be quantified, and used for powerful inference. Nowadays, Species Distribution Models (SDMs) play a big role, e.g. using Machine Learning and AI algorithms, but their best-available technical opportunities remain still not used for their potential e.g. in the policy sector. Here we present Super SDMs that invoke ML, OA Big Data, and the Cloud with a workflow for the best-possible inference for the 300 + global squirrel species. Such global Big Data models are especially important for the many marginalized squirrel species and the high number of endangered and data-deficient species in the world, specifically in tropical regions. While our work shows common issues with SDMs and the maxent algorithm (‘Shallow Learning'), here we present a multi-species Big Data SDM template for subsequent ensemble models and generic progress to tackle global species hotspot and coldspot assessments for a more inclusive and holistic inference. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-55173-8 |