Spatio-Temporal Count Autoregression

We study the problem of modeling and inference for spatio-temporal count processes. Our approach uses parsimonious parameterisations of multivariate autoregressive count time series models, including possible regression on covariates. We control the number of parameters by specifying spatial neighbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data science in science 2024-12, Vol.3 (1)
Hauptverfasser: Maletz, Steffen, Fokianos, Konstantinos, Fried, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problem of modeling and inference for spatio-temporal count processes. Our approach uses parsimonious parameterisations of multivariate autoregressive count time series models, including possible regression on covariates. We control the number of parameters by specifying spatial neighbourhood structures for possibly huge matrices that take into account spatio-temporal dependencies. This work is motivated by real data applications which call for suitable models. Extensive simulation studies show that our approach yields reliable estimators.
ISSN:2694-1899
2694-1899
DOI:10.1080/26941899.2024.2425171