Dimension-Free Bounds for the Union-Closed Sets Conjecture
The union-closed sets conjecture states that, in any nonempty union-closed family F of subsets of a finite set, there exists an element contained in at least a proportion 1/2 of the sets of F. Using an information-theoretic method, Gilmer recently showed that there exists an element contained in at...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2023-05, Vol.25 (5), p.767 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The union-closed sets conjecture states that, in any nonempty union-closed family F of subsets of a finite set, there exists an element contained in at least a proportion 1/2 of the sets of F. Using an information-theoretic method, Gilmer recently showed that there exists an element contained in at least a proportion 0.01 of the sets of such F. He conjectured that their technique can be pushed to the constant 3-52 which was subsequently confirmed by several researchers including Sawin. Furthermore, Sawin also showed that Gilmer's technique can be improved to obtain a bound better than 3-52 but this new bound was not explicitly given by Sawin. This paper further improves Gilmer's technique to derive new bounds in the optimization form for the union-closed sets conjecture. These bounds include Sawin's improvement as a special case. By providing cardinality bounds on auxiliary random variables, we make Sawin's improvement computable and then evaluate it numerically, which yields a bound approximately 0.38234, slightly better than 3-52≈0.38197. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e25050767 |