Invertible networks or partons to detector and back again

For simulations where the forward and the inverse directions have a physics meaning, invertible neural networks are especially useful. A conditional INN can invert a detector simulation in terms of high-level observables, specifically for ZW production at the LHC. It allows for a per-event statistic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics 2020-11, Vol.9 (5), p.074, Article 074
Hauptverfasser: Bellagente, Marco, Butter, Anja, Kasieczka, Gregor, Plehn, Tilman, Rousselot, Armand, Winterhalder, Ramon, Ardizzone, Lynton, Köthe, Ullrich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For simulations where the forward and the inverse directions have a physics meaning, invertible neural networks are especially useful. A conditional INN can invert a detector simulation in terms of high-level observables, specifically for ZW production at the LHC. It allows for a per-event statistical interpretation. Next, we allow for a variable number of QCD jets. We unfold detector effects and QCD radiation to a pre-defined hard process, again with a per-event probabilistic interpretation over parton-level phase space.
ISSN:2542-4653
2542-4653
DOI:10.21468/SciPostPhys.9.5.074