Invertible networks or partons to detector and back again
For simulations where the forward and the inverse directions have a physics meaning, invertible neural networks are especially useful. A conditional INN can invert a detector simulation in terms of high-level observables, specifically for ZW production at the LHC. It allows for a per-event statistic...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2020-11, Vol.9 (5), p.074, Article 074 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For simulations where the forward and the inverse directions have
a physics meaning, invertible neural networks are especially useful.
A conditional INN can invert a detector simulation in terms of
high-level observables, specifically for ZW production at the
LHC. It allows for a per-event statistical interpretation. Next, we
allow for a variable number of QCD jets. We unfold detector effects
and QCD radiation to a pre-defined hard process, again with a
per-event probabilistic interpretation over parton-level phase
space. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.9.5.074 |