Changes of gut microbiome composition and metabolites associated with hypertensive heart failure rats

The potential role of the gut microbiome (GM) in heart failure (HF) had recently been revealed. However, the underlying mechanisms of the GM and fecal metabolome in HF have not been characterized. The Dahl salt-sensitive rat model of hypertensive heart failure (H-HF) was used to study the clinical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC microbiology 2021-05, Vol.21 (1), p.141-141, Article 141
Hauptverfasser: Li, Lin, Zhong, Sen-Jie, Hu, Si-Yuan, Cheng, Bin, Qiu, Hong, Hu, Zhi-Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential role of the gut microbiome (GM) in heart failure (HF) had recently been revealed. However, the underlying mechanisms of the GM and fecal metabolome in HF have not been characterized. The Dahl salt-sensitive rat model of hypertensive heart failure (H-HF) was used to study the clinical symptoms and characteristics. To elucidate the pathogenesis of HF, we combined 16S rRNA gene sequencing and metabolomics to analyze gut microbial compositions and fecal metabolomic profiles of rats with H-HF. PCoA of beta diversity shown that the gut microbiome composition profiles among the three groups were separated. Gut microbial composition was significantly altered in H-HF rats, the ratio of Firmicutes to Bacteroidetes(F/B) increased and the abundance of Muribaculaceae, Lachnospiraceae, and Lactobacillaceae decreased. Significantly altered levels of 17 genera and 35 metabolites were identified as the potential biomarker of H-HF. Correlation analysis revealed that specific altered genera were strongly correlated with changed fecal metabolites. The reduction in short-chain fatty acids (SCFA)-producing bacteria and trimethylamine N-oxide (TMAO) might be a notable characteristic for H-HF. This is the first study to characterize the fecal microbiome of hypertensive heart failure by integrating 16S rRNA gene sequencing and LC-MS-based metabolomics approaches. Collectively, the results suggesting changes of gut microbiome composition and metabolites are associated with hypertensive heart failure rats.
ISSN:1471-2180
1471-2180
DOI:10.1186/s12866-021-02202-5