Preparation and Properties of Novel Mucilage Composite Films Reinforced with Polydimethylsiloxane

Recently, there is an increasing interest in research on biodegradable, non‐toxic, and high‐strength biomaterials that can replace plastics, especially in the food industry. In this study, mucilage obtained from Linum usitatissimum seeds is used to develop a natural biodegradable biomaterial by rein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2024-03, Vol.309 (3), p.n/a
1. Verfasser: Bilican, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, there is an increasing interest in research on biodegradable, non‐toxic, and high‐strength biomaterials that can replace plastics, especially in the food industry. In this study, mucilage obtained from Linum usitatissimum seeds is used to develop a natural biodegradable biomaterial by reinforcing it with different concentrations of polydimethylsiloxane (PDMS). The biomaterials produced in the form of films are thoroughly investigated in terms of physicochemical (Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy (SEM), energy dispersive X‐ray spectrum (EDX), atomic force microscopy (AFM), contact angle, and mechanical), biodegradable (in soil and water), and antibacterial properties. SEM‐EDX and AFM demonstrate the homogeneous distribution of PDMS throughout the mucilage matrix. The incorporation of PDMS improves the water solubility of the mucilage composite films, thereby enhancing their strength. It also imparts hydrophobic characteristics to the composite films. Thus, PDMS ensures the high barrier property of the composite films against water vapor. Furthermore, the addition of PDMS increases the antimicrobial properties of the mucilage composite films. The obtained results indicate that the first‐time produced mucilage‐PDMS composite films can serve as an alternative product for food packaging applications. This study investigates the properties of mucilage composite films enhanced with polydimethylsiloxane (PDMS). The results indicate that mucilage‐PDMS composite films, produced for the first time, can take their place in the food packaging market.
ISSN:1438-7492
1439-2054
DOI:10.1002/mame.202300317