Composite Electromagnetic Scattering and High-Resolution SAR Imaging of Multiple Targets above Rough Surface

Aiming at the high efficiency of composite electromagnetic scattering analysis and radar target detection and recognition utilizing high-range resolution profile (HRRP) characteristics and high-resolution synthetic aperture radar (SAR) images, a near-field modified iterative physical optics and face...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-06, Vol.14 (12), p.2910
Hauptverfasser: Wang, Qingkuan, Tong, Chuangming, Li, Ximin, Wang, Yijin, Wang, Zhaolong, Wang, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the high efficiency of composite electromagnetic scattering analysis and radar target detection and recognition utilizing high-range resolution profile (HRRP) characteristics and high-resolution synthetic aperture radar (SAR) images, a near-field modified iterative physical optics and facet-based two-scale model for analysis of composite electromagnetic scattering from multiple targets above rough surface have been presented. In this method, the coupling scattering of multiple targets is calculated by near-field iterative physical optics and the far-field scattering is calculated by the physical optics method. For the evaluation of the scattering of an electrically large sea surface, a slope cutoff probability distribution function is introduced in the two-scale model. Moreover, a fast imaging method is introduced based on the proposed hybrid electromagnetic scattering method. The numerical results show the effectiveness of the proposed method, which can generate backscattering data accurately and obtain high-resolution SAR images. It is concluded that the proposed method has the advantages of accurate computation and good recognition performance.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14122910