Preserving stationary discontinuities in two-layer shallow water equations with a novel well-balanced approach
This paper proposes a novel energy-balanced numerical scheme for the two-layer shallow water equations (2LSWEs) that accurately captures internal hydraulic jumps without introducing spurious oscillations. The proposed scheme overcomes the problem of post-shock oscillations in the 2LSWE, a phenomenon...
Gespeichert in:
Veröffentlicht in: | Journal of hydroinformatics 2023-09, Vol.25 (5), p.1979-2003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel energy-balanced numerical scheme for the two-layer shallow water equations (2LSWEs) that accurately captures internal hydraulic jumps without introducing spurious oscillations. The proposed scheme overcomes the problem of post-shock oscillations in the 2LSWE, a phenomenon commonly observed in numerical solutions of non-linear hyperbolic systems when shock-capturing schemes are used. The approach involves reconstructing the internal momentum equation of 2LSWEs using the correct Hugoniot curve via a set of shock wave fixes originally developed for single-layer shallow water equations. The scheme successfully preserves all stationary solutions, making it highly suitable for simulations of real-life scenarios involving small perturbations of these conditions. |
---|---|
ISSN: | 1464-7141 1465-1734 |
DOI: | 10.2166/hydro.2023.312 |