Scattered Train Bolt Point Cloud Segmentation Based on Hierarchical Multi-Scale Feature Learning

In view of the difficulty of using raw 3D point clouds for component detection in the railway field, this paper designs a point cloud segmentation model based on deep learning together with a point cloud preprocessing mechanism. First, a special preprocessing algorithm is designed to resolve the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-02, Vol.23 (4), p.2019
Hauptverfasser: Zeng, Ni, Li, Jinlong, Zhang, Yu, Gao, Xiaorong, Luo, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In view of the difficulty of using raw 3D point clouds for component detection in the railway field, this paper designs a point cloud segmentation model based on deep learning together with a point cloud preprocessing mechanism. First, a special preprocessing algorithm is designed to resolve the problems of noise points, acquisition errors, and large data volume in the actual point cloud model of the bolt. The algorithm uses the point cloud adaptive weighted guided filtering for noise smoothing according to the noise characteristics. Then retaining the key points of the point cloud, this algorithm uses the octree to partition the point cloud and carries out iterative farthest point sampling in each partition for obtaining the standard point cloud model. The standard point cloud model is then subjected to hierarchical multi-scale feature extraction to obtain global features, which are combined with local features through a self-attention mechanism, while linear interpolation is used to further expand the perceptual field of local features of the model as a basis for segmentation, and finally the segmentation is completed. Experiments show that the proposed algorithm could deal with the scattered bolt point cloud well, realize the segmentation of train bolt and background, and could achieve high segmentation accuracy, which has important practical significance for train safety detection.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23042019