Urban Rail Transit Vehicle Light-weighting and Energy-saving Technologies
[Objective] The increasing use of fully automated driving and high-redundancy technologies in urban rail transit vehicles (hereinafter referred to as ′metro′) leads to the increase of on-board device amount to varying degrees, resulting in the increasing mass of metro vehicles. Additionally, due to...
Gespeichert in:
Veröffentlicht in: | Chengshi Guidao Jiaotong Yanjiu 2024-02, Vol.27 (2), p.242-246 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Objective] The increasing use of fully automated driving and high-redundancy technologies in urban rail transit vehicles (hereinafter referred to as ′metro′) leads to the increase of on-board device amount to varying degrees, resulting in the increasing mass of metro vehicles. Additionally, due to the significant overall transport capacity of metro vehicles, their overall energy consumption remains at a higher level. Therefore, it is necessary to study the light-weighting and energy-saving technologies for metro vehicles. [Method] Measures for reducing the weight of carbody, traction and auxiliary power systems, bogies and braking systems, air-conditioning and door systems, couplers and gangways, as well as vehicle interior and compartment equipment, are introduced. Energy-saving measures for the traction and auxiliary power systems, air-conditioning system, and lighting system are presented respectively. [Result & Conclusion] Feasible light-weighting measures include adopting a full aluminum carbody structu |
---|---|
ISSN: | 1007-869X |
DOI: | 10.16037/j.1007-869x.2024.02.047 |