Reducing Building Conflicts in Map Generalization with an Improved PSO Algorithm
In map generalization, road symbolization and map scale reduction may create spatial conflicts between roads and neighboring buildings. To resolve these conflicts, cartographers often displace the buildings. However, because such displacement sometimes produces secondary spatial conflicts, it is nec...
Gespeichert in:
Veröffentlicht in: | ISPRS international journal of geo-information 2017-05, Vol.6 (5), p.127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In map generalization, road symbolization and map scale reduction may create spatial conflicts between roads and neighboring buildings. To resolve these conflicts, cartographers often displace the buildings. However, because such displacement sometimes produces secondary spatial conflicts, it is necessary to solve the spatial conflicts iteratively. In this paper, we apply the immune genetic algorithm (IGA) and improved particle swarm optimization (PSO) to building displacement to solve conflicts. The dual-inheritance framework from the cultural algorithm is adopted in the PSO algorithm to optimize the topologic structure of particles. We generate Pareto optimal displacement solutions using the niche Pareto competition mechanism. The results of experiments comparing IGA and the improved PSO show that the improved PSO outperforms IGA; the improved PSO results in fewer graphic conflicts and smaller movements that better satisfy the movement precision requirements. |
---|---|
ISSN: | 2220-9964 2220-9964 |
DOI: | 10.3390/ijgi6050127 |