Multi-objective learning and explanation for stroke risk assessment in Shanxi province

Stroke is the leading cause of death in China (Zhou et al. in The Lancet, 2019). A dataset from Shanxi Province is analyzed to predict the risk of patients at four states (low/medium/high/attack) and to estimate transition probabilities between various states via a SHAP DeepExplainer. To handle the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-12, Vol.12 (1), p.22337-22337, Article 22337
Hauptverfasser: Ma, Jing, Sun, Yiyang, Liu, Junjie, Huang, Huaxiong, Zhou, Xiaoshuang, Xu, Shixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stroke is the leading cause of death in China (Zhou et al. in The Lancet, 2019). A dataset from Shanxi Province is analyzed to predict the risk of patients at four states (low/medium/high/attack) and to estimate transition probabilities between various states via a SHAP DeepExplainer. To handle the issues related to an imbalanced sample set, the quadratic interactive deep model (QIDeep) was first proposed by flexible selection and appending of quadratic interactive features. The experimental results showed that the QIDeep model with 3 interactive features achieved the state-of-the-art accuracy 83.33%(95% CI (83.14%; 83.52%)). Blood pressure, physical inactivity, smoking, weight, and total cholesterol are the top five most important features. For the sake of high recall in the attack state, stroke occurrence prediction is considered an auxiliary objective in multi-objective learning. The prediction accuracy was improved, while the recall of the attack state was increased by 17.79% (to 82.06%) compared to QIDeep (from 71.49%) with the same features. The prediction model and analysis tool in this paper provided not only a prediction method but also an attribution explanation of the risk states and transition direction of each patient, a valuable tool for doctors to analyze and diagnose the disease.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-26595-z