High speed digital interfacing for a neural data acquisition system

Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC) was developed that is optimized for the recording from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current directions in biomedical engineering 2016-09, Vol.2 (1), p.87-90
Hauptverfasser: Bahr, Andreas, Saleh, Lait Abu, Schroeder, Dietmar, Krautschneider, Wolfgang H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC) was developed that is optimized for the recording from neonatal mice [Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. 16 Channel Neural Recording Integrated Circuit with SPI Interface and Error Correction Coding. Proc. 9th BIOSTEC 2016. Biodevices: Rome, Italy, 2016; 1: 263; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. Development of a neural recording mixed signal integrated circuit for biomedical signal acquisition. Biomed Eng Biomed Tech s 2015; 60(S1): 298–299; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider WH. 16 Channel Neural Recording Mixed Signal ASIC. CDNLive EMEA 2015 Conference Proceedings, 2015.]. To enable the live display of the neural signals a multichannel neural data acquisition system with live display functionality is presented. It implements a high speed data transmission from the ASIC to a computer with a live display functionality. The system has been successfully implemented and was used in a neural recording of a head-fixed mouse.
ISSN:2364-5504
DOI:10.1515/cdbme-2016-0022