Better Heisenberg Limits, Coherence Bounds, and Energy-Time Tradeoffs via Quantum Rényi Information

An uncertainty relation for the Rényi entropies of conjugate quantum observables is used to obtain a strong Heisenberg limit of the form RMSE≥f(α)/(⟨N⟩+12), bounding the root mean square error of any estimate of a random optical phase shift in terms of average photon number, where f(α) is maximised...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2022-11, Vol.24 (11), p.1679
1. Verfasser: Hall, Michael J. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An uncertainty relation for the Rényi entropies of conjugate quantum observables is used to obtain a strong Heisenberg limit of the form RMSE≥f(α)/(⟨N⟩+12), bounding the root mean square error of any estimate of a random optical phase shift in terms of average photon number, where f(α) is maximised for non-Shannon entropies. Related simple yet strong uncertainty relations linking phase uncertainty to the photon number distribution, such as ΔΦ≥maxnpn, are also obtained. These results are significantly strengthened via upper and lower bounds on the Rényi mutual information of quantum communication channels, related to asymmetry and convolution, and applied to the estimation (with prior information) of unitary shift parameters such as rotation angle and time, and to obtain strong bounds on measures of coherence. Sharper Rényi entropic uncertainty relations are also obtained, including time-energy uncertainty relations for Hamiltonians with discrete spectra. In the latter case almost-periodic Rényi entropies are introduced for nonperiodic systems.
ISSN:1099-4300
1099-4300
DOI:10.3390/e24111679