Using sensitivity analyses to understand bistable system behavior

Bistable systems, i.e., systems that exhibit two stable steady states, are of particular interest in biology. They can implement binary cellular decision making, e.g., in pathways for cellular differentiation and cell cycle regulation. The onset of cancer, prion diseases, and neurodegenerative disea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2023-04, Vol.24 (1), p.136-136, Article 136
Hauptverfasser: Sreedharan, Vandana, Bhalla, Upinder S, Ramakrishnan, Naren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bistable systems, i.e., systems that exhibit two stable steady states, are of particular interest in biology. They can implement binary cellular decision making, e.g., in pathways for cellular differentiation and cell cycle regulation. The onset of cancer, prion diseases, and neurodegenerative diseases are known to be associated with malfunctioning bistable systems. Exploring and characterizing parameter spaces in bistable systems, so that they retain or lose bistability, is part of a lot of therapeutic research such as cancer pharmacology. We use eigenvalue sensitivity analysis and stable state separation sensitivity analysis to understand bistable system behaviors, and to characterize the most sensitive parameters of a bistable system. While eigenvalue sensitivity analysis is an established technique in engineering disciplines, it has not been frequently used to study biological systems. We demonstrate the utility of these approaches on a published bistable system. We also illustrate scalability and generalizability of these methods to larger bistable systems. Eigenvalue sensitivity analysis and separation sensitivity analysis prove to be promising tools to define parameter design rules to make switching decisions between either stable steady state of a bistable system and a corresponding monostable state after bifurcation. These rules were applied to the smallest two-component bistable system and results were validated analytically. We showed that with multiple parameter settings of the same bistable system, we can design switching to a desirable state to retain or lose bistability when the most sensitive parameter is varied according to our parameter perturbation recommendations. We propose eigenvalue and stable state separation sensitivity analyses as a framework to evaluate large and complex bistable systems.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-023-05206-2