Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes

We study universal quantities characterizing the second order phase transition in the Gribov process. To this end, we use numerical methods for the calculation of the renormalization group functions up to two-loop order in perturbation theory in the famous ε -expansion. Within this procedure the ano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2020, Vol.226, p.2001
Hauptverfasser: Adzhemyan, Loran Ts, Hnatič, Michal, Ivanova, Ella, Kompaniets, Mikhail V., Lučivjanský, Tomáš, Mižišin, Lukáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study universal quantities characterizing the second order phase transition in the Gribov process. To this end, we use numerical methods for the calculation of the renormalization group functions up to two-loop order in perturbation theory in the famous ε -expansion. Within this procedure the anomalous dimensions are evaluated using two different subtraction schemes: the minimal subtraction scheme and the null-momentum scheme. Numerical calculation of integrals was done on the HybriLIT cluster using the Vegas algorithm from the CUBA library. The comparison with existing analytic calculations shows that the minimal subtraction scheme yields more precise results.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202022602001