Enhancing cortical network-level participation coefficient as a potential mechanism for transfer in cognitive training in aMCI
Effective cognitive training must improve cognition beyond the trained domain (show a transfer effect) and be applicable to dementia-risk populations, e.g., amnesic mild cognitive impairment (aMCI). Theories suggest training should target processes that 1) show robust engagement, 2) are domain-gener...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2022-07, Vol.254, p.119124-119124, Article 119124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effective cognitive training must improve cognition beyond the trained domain (show a transfer effect) and be applicable to dementia-risk populations, e.g., amnesic mild cognitive impairment (aMCI). Theories suggest training should target processes that 1) show robust engagement, 2) are domain-general, and 3) reflect long-lasting changes in brain organization. Brain regions that connect to many different networks (i.e., show high participation coefficient; PC) are known to support integration. This capacity is 1) relatively preserved in aMCI, 2) required across a wide range of cognitive domains, and 3) trait-like. In 49 individuals with aMCI that completed a 6-week visual speed of processing training (VSOP) and 28 active controls, enhancement in PC was significantly more related to transfer to working memory at global and network levels in VSOP compared to controls, particularly in networks with many high-PC nodes. This suggests that enhancing brain integration may provide a target for developing effective cognitive training. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2022.119124 |