On ideal equal convergence
We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2014, Vol.12 (6), p.896-910 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence encompasses two different kinds of ideal equal convergence introduced in [Das P., Dutta S., Pal S.K., On
and
*-equal convergence and an Egoroff-type theorem, Mat. Vesnik, 2014, 66(2), 165–177]_and [Filipów R., Szuca P., Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl., 2012, 391(1), 1–9]. We also solve a few problems posed in the paper by Das, Dutta and Pal. |
---|---|
ISSN: | 1895-1074 2391-5455 1644-3616 2391-5455 |
DOI: | 10.2478/s11533-013-0388-4 |