The Potentiodynamic Bottom-up Growth of the Tin Oxide Nanostructured Layer for Gas-Analytical Multisensor Array Chips

We report a deposition of the tin oxide/hydroxide nanostructured layer by the potentiodynamic method from acidic nitrate solutions directly over the substrate, equipped with multiple strip electrodes which is employed as a gas-analytical multisensor array chip. The electrochemical synthesis is set t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2017-08, Vol.17 (8), p.1908
Hauptverfasser: Fedorov, Fedor S, Podgainov, Dmitry, Varezhnikov, Alexey, Lashkov, Andrey, Gorshenkov, Michail, Burmistrov, Igor, Sommer, Martin, Sysoev, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a deposition of the tin oxide/hydroxide nanostructured layer by the potentiodynamic method from acidic nitrate solutions directly over the substrate, equipped with multiple strip electrodes which is employed as a gas-analytical multisensor array chip. The electrochemical synthesis is set to favor the growth of the tin oxide/hydroxide phase, while the appearance of metallic Sn is suppressed by cycling. The as-synthesized tin oxide/hydroxide layer is characterized by mesoporous morphology with grains, 250-300 nm diameter, which are further crystallized into fine SnO₂ poly-nanocrystals following heating to 300 °C for 24 h just on the chip. The fabricated layer exhibits chemiresistive properties under exposure to organic vapors, which allows the generation of a multisensor vector signal capable of selectively distinguishing various vapors.
ISSN:1424-8220
1424-8220
DOI:10.3390/s17081908