Synchronization robustness analysis of memristive-based neural networks with deviating arguments and stochastic perturbations

In this article, we investigate the robustness of memristive-based neural networks (MNNs) with deviating arguments (DAs) and stochastic perturbations (SPs). Based on the set-valued mapping method, differential inclusion theory and Gronwall inequalities, we derive the upper bounds for the width of DA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2024, Vol.9 (1), p.918-941
Hauptverfasser: Xie, Tao, Xiong, Xing, Zhang, Qike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we investigate the robustness of memristive-based neural networks (MNNs) with deviating arguments (DAs) and stochastic perturbations (SPs). Based on the set-valued mapping method, differential inclusion theory and Gronwall inequalities, we derive the upper bounds for the width of DAs and the intensity of SPs. When the DAs and SPs are smaller than these upper bounds, the MNNs maintains exponential synchronization. Finally, several specific simulation examples demonstrate the effectiveness of the results.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2024046