Natural product-driven dual COX-LOX inhibitors: Overview of recent studies on the development of novel anti-inflammatory agents

Inflammation is a complicated physiological process that results in a variety of disorders. Several inflammatory mediators are produced during this process, which is responsible for long-term inflammatory conditions like osteoarthritis, rheumatoid arthritis, asthma, cancer, and neurological disorder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-03, Vol.9 (3), p.e14569-e14569, Article e14569
Hauptverfasser: Mukhopadhyay, Nabarun, Shukla, Ashtabhuja, Makhal, Priyanka N., Kaki, Venkata Rao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inflammation is a complicated physiological process that results in a variety of disorders. Several inflammatory mediators are produced during this process, which is responsible for long-term inflammatory conditions like osteoarthritis, rheumatoid arthritis, asthma, cancer, and neurological disorders. Inflammatory mediators are produced by an arachidonic acid pathway that gives us several anti-inflammatory targets. The most commonly used medications are NSAIDs to treat inflammation by inhibiting cyclooxygenase (COX) and lipoxygenase enzymes (5-LOX). However, this therapy is associated with adverse events like gastrointestinal disorders, renal failure, etc., limiting its use. Therefore, novel, efficacious, and safer anti-inflammatory agents are prerequisites for inhibiting both cyclooxygenase and lipoxygenase pathways. Though several synthetic analogs are under development, natural products may act as a potential source to identify novel molecules and herbal remedies. Valuable contributions have been made in this direction by the scientific communities. This review article briefly discusses the implications of phytochemicals and bioactive fractions in the development of dual COX-LOX inhibitors while highlighting different classes of phytoconstituents such as tannins, steroids, flavonoids, alkaloids, terpenoids, among others, that showed significant dual COX-LOX inhibition.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e14569