Decomposition of Symmetry into Ordinal Quasi-Symmetry and Marginal Equimoment for Multi-way Tables

For the analysis of square contingency tables with ordered categories, Agresti (1983) introduced the linear diagonals-parameter symmetry (LDPS) model. Tomizawa (1991) considered an extended LDPS (ELDPS) model, which has one more parameter than the LDPS model. These models are special cases of Caussi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Österreichische Zeitschrift für Statistik 2016-04, Vol.36 (4)
Hauptverfasser: Yamamoto, Hideharu, Iwashita, Toshiya, Tomizawa, Sadao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the analysis of square contingency tables with ordered categories, Agresti (1983) introduced the linear diagonals-parameter symmetry (LDPS) model. Tomizawa (1991) considered an extended LDPS (ELDPS) model, which has one more parameter than the LDPS model. These models are special cases of Caussinus (1965) quasi-symmetry (QS) model. Caussinus showed that the symmetry (S) model is equivalent to the QS model and the marginal homogeneity (MH) model holding simultaneously. For square tables with ordered categories, Agresti (2002, p.430) gave a decomposition for the S model into the ordinal quasi-symmetry and MH models. This paper proposes some decompositions which are different from Caussinus’ and Agresti’s decompositions. It gives (i) two kinds of decomposition theorems of the S model for two-way tables, (ii) extended models corresponding to the LDPS and ELDPS, and the generalized model further for multi-way tables, and (iii) three kinds of decomposition theorems of the S model into their models and marginal equimoment models for multi-way tables. The proposed decompositions may be useful if it is reasonable to assume the underlying multivariate normal distribution.
ISSN:1026-597X
DOI:10.17713/ajs.v36i4.340