Hopping of single nanoparticles trapped in a plasmonic double-well potential

Thermally induced particle hopping in the nanoscale double-well potential is fundamental in material design and device operation. After the proposal of the basic hopping theory, several experimental studies, including some using the optical trapping method, have validated the theoretical approach ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2020-11, Vol.9 (16), p.4729-4735
Hauptverfasser: Yoon, Seung Ju, Song, Da In, Lee, Jungmin, Kim, Myung-Ki, Lee, Yong-Hee, Kim, Chang-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermally induced particle hopping in the nanoscale double-well potential is fundamental in material design and device operation. After the proposal of the basic hopping theory, several experimental studies, including some using the optical trapping method, have validated the theoretical approach over various friction ranges of the surrounding medium. However, only external parameters, such as viscosity, temperature, and pressures, have been varied in practical circumstances, and other tools capable of adjusting the potential profile itself to modulate the hopping rate are needed. By using metallic nanoantenna with various gap sizes and different optical pump power, we engineered a double-well potential landscape and directly observed the hopping of a single nanoparticle with a diameter of 4 nm. The distance between the two potential wells was 0.6–5 nm, and the maximum well depth and maximum height of the central potential barrier were approximately 69 and 4  , respectively. The hopping rate was governed by the Arrhenius law and showed a vertex when the barrier height was approximately 2  , which was in good agreement with the computational expectations.
ISSN:2192-8606
2192-8614
DOI:10.1515/nanoph-2020-0411