A robotic arm control system with simultaneous and sequential modes combining eye-tracking with steady-state visual evoked potential in virtual reality environment

At present, single-modal brain-computer interface (BCI) still has limitations in practical application, such as low flexibility, poor autonomy, and easy fatigue for subjects. This study developed an asynchronous robotic arm control system based on steady-state visual evoked potentials (SSVEP) and ey...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neurorobotics 2023-03, Vol.17, p.1146415-1146415
Hauptverfasser: Guo, Rongxiao, Lin, Yanfei, Luo, Xi, Gao, Xiaorong, Zhang, Shangen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At present, single-modal brain-computer interface (BCI) still has limitations in practical application, such as low flexibility, poor autonomy, and easy fatigue for subjects. This study developed an asynchronous robotic arm control system based on steady-state visual evoked potentials (SSVEP) and eye-tracking in virtual reality (VR) environment, including simultaneous and sequential modes. For simultaneous mode, target classification was realized by decision-level fusion of electroencephalography (EEG) and eye-gaze. The stimulus duration for each subject was non-fixed, which was determined by an adjustable window method. Subjects could autonomously control the start and stop of the system using triple blink and eye closure, respectively. For sequential mode, no calibration was conducted before operation. First, subjects' gaze area was obtained through eye-gaze, and then only few stimulus blocks began to flicker. Next, target classification was determined using EEG. Additionally, subjects could reject false triggering commands using eye closure. In this study, the system effectiveness was verified through offline experiment and online robotic-arm grasping experiment. Twenty subjects participated in offline experiment. For simultaneous mode, average ACC and ITR at the stimulus duration of 0.9 s were 90.50% and 60.02 bits/min, respectively. For sequential mode, average ACC and ITR at the stimulus duration of 1.4 s were 90.47% and 45.38 bits/min, respectively. Fifteen subjects successfully completed the online tasks of grabbing balls in both modes, and most subjects preferred the sequential mode. The proposed hybrid brain-computer interface (h-BCI) system could increase autonomy, reduce visual fatigue, meet individual needs, and improve the efficiency of the system.
ISSN:1662-5218
1662-5218
DOI:10.3389/fnbot.2023.1146415