Adiponectin is protective against endoplasmic reticulum stress-induced apoptosis of endothelial cells in sepsis

Endoplasmic reticulum (ER) stress is a critical molecular mechanism involved in the pathogenesis of sepsis. Hence, strategies for alleviating this stress may be essential for preventing cardiovascular injuries under sepsis. Adiponectin is secreted by adipocytes and its levels are decreased in sepsis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of medical and biological research 2018-01, Vol.51 (12), p.e7747-e7747
Hauptverfasser: Hou, Yun, Wang, Xi Feng, Lang, Zhi Qiang, Jin, Yin Chuan, Fu, Jia Rong, Xv, Xiao Min, Sun, Shi Tian, Xin, Xin, Zhang, Lian Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endoplasmic reticulum (ER) stress is a critical molecular mechanism involved in the pathogenesis of sepsis. Hence, strategies for alleviating this stress may be essential for preventing cardiovascular injuries under sepsis. Adiponectin is secreted by adipocytes and its levels are decreased in sepsis. The purpose of this study was to investigate the protective effects of adiponectin treatment on endothelial cells and its mechanism. Male Wistar rats underwent cecal ligation and puncture (CLP) before being treated with adiponectin (72 and 120 μg/kg). The levels of malondialdehyde (MDA) in plasma, histological structure, and apoptosis of endothelial cells were evaluated. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with adiponectin at 10 and 20 μg/mL for 24 h after stimulation by lipopolysaccharide (LPS). The levels of reactive oxygen species (ROS), ultrastructure, rate of apoptosis, the expression of inositol-requiring enzyme 1α (IRE1α) protein, and its downstream molecules (78 kDa glucose-regulated protein (GRP78), C/EBP homologous protein (CHOP), and caspase-12) were detected. The results showed that the levels of MDA and ROS induced by CLP or LPS stimulation were increased. Furthermore, endothelial cell apoptosis was increased under sepsis. The IRE1α pathway was initiated, as evidenced by activated IRE1α, increased GRP78, and up-regulated CHOP and caspase-12 in HUVECs. Following treatment with adiponectin, the number of apoptotic endothelial cells was markedly decreased. These findings demonstrated that treatment with adiponectin decreased apoptosis of endothelial cells caused by sepsis by attenuating the ER stress IRE1α pathway activated by oxidative stress.
ISSN:0100-879X
1414-431X
1414-431X
DOI:10.1590/1414-431x20187747