Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus albus
Coumarins, natural products abundant in Melilotus albus, confer features in response to abiotic stresses, and are mainly present as glycoconjugates. UGTs (UDP-glycosyltransferases) are responsible for glycosylation modification of coumarins. However, information regarding the relationship between co...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-10, Vol.22 (19), p.10826 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coumarins, natural products abundant in Melilotus albus, confer features in response to abiotic stresses, and are mainly present as glycoconjugates. UGTs (UDP-glycosyltransferases) are responsible for glycosylation modification of coumarins. However, information regarding the relationship between coumarin biosynthesis and stress-responsive UGTs remains limited. Here, a total of 189 MaUGT genes were identified from the M. albus genome, which were distributed differentially among its eight chromosomes. According to the phylogenetic relationship, MaUGTs can be classified into 13 major groups. Sixteen MaUGT genes were differentially expressed between genotypes of Ma46 (low coumarin content) and Ma49 (high coumarin content), suggesting that these genes are likely involved in coumarin biosynthesis. About 73.55% and 66.67% of the MaUGT genes were differentially expressed under ABA or abiotic stress in the shoots and roots, respectively. Furthermore, the functions of MaUGT68 and MaUGT186, which were upregulated under stress and potentially involved in coumarin glycosylation, were characterized by heterologous expression in yeast and Escherichia coli. These results extend our knowledge of the UGT gene family along with MaUGT gene functions, and provide valuable findings for future studies on developmental regulation and comprehensive data on UGT genes in M. albus. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms221910826 |