Deep learning-based plant classification and crop disease classification by thermal camera

Studies regarding image classification based on plant and crop disease images that were acquired using a visible light camera have been conducted in the past, whereas those based on thermal images are limited. This is because the thermal images are blurry due to the nature of the thermal camera, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of King Saud University. Computer and information sciences 2022-11, Vol.34 (10), p.10474-10486
Hauptverfasser: Batchuluun, Ganbayar, Nam, Se Hyun, Park, Kang Ryoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies regarding image classification based on plant and crop disease images that were acquired using a visible light camera have been conducted in the past, whereas those based on thermal images are limited. This is because the thermal images are blurry due to the nature of the thermal camera, which makes it extremely difficult to classify objects. Therefore, this study proposes a new plant and crop disease classification method based on thermal images. The proposed method used a convolutional neural network with explainable artificial intelligence (XAI) to improve plant and crop disease classification performance. A new thermal plant image dataset was built for conducting the experiments, which contained 4,720 various images of flowers and leaves. In addition, an open database of crop diseases was also used, such as the Paddy crop dataset. The proposed plant and crop disease classification method demonstrated a 98.55% accuracy for the thermal plant image dataset and a 90.04% accuracy for the Paddy crop dataset, both of which outperformed other existing methods.
ISSN:1319-1578
2213-1248
DOI:10.1016/j.jksuci.2022.11.003