Cycloidal CT with CNN-based sinogram completion and in-scan generation of training data
In x-ray computed tomography (CT), the achievable image resolution is typically limited by several pre-fixed characteristics of the x-ray source and detector. Structuring the x-ray beam using a mask with alternating opaque and transmitting septa can overcome this limit. However, the use of a mask im...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-01, Vol.12 (1), p.893-893, Article 893 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In x-ray computed tomography (CT), the achievable image resolution is typically limited by several pre-fixed characteristics of the x-ray source and detector. Structuring the x-ray beam using a mask with alternating opaque and transmitting septa can overcome this limit. However, the use of a mask imposes an undersampling problem: to obtain complete datasets, significant lateral sample stepping is needed in addition to the sample rotation, resulting in high x-ray doses and long acquisition times. Cycloidal CT, an alternative scanning scheme by which the sample is rotated and translated simultaneously, can provide high aperture-driven resolution without sample stepping, resulting in a lower radiation dose and faster scans. However, cycloidal sinograms are incomplete and must be restored before tomographic images can be computed. In this work, we demonstrate that high-quality images can be reconstructed by applying the recently proposed Mixed Scale Dense (MS-D) convolutional neural network (CNN) to this task. We also propose a novel training approach by which training data are acquired as part of each scan, thus removing the need for large sets of pre-existing reference data, the acquisition of which is often not practicable or possible. We present results for both simulated datasets and real-world data, showing that the combination of cycloidal CT and machine learning-based data recovery can lead to accurate high-resolution images at a limited dose. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-04910-y |