Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review

Membraneless microfluidic fuel cells (MMFCs) are being studied extensively as an alternative to batteries and conventional membrane fuel cells because of their simple functioning and lower manufacturing cost. MMFCs use the laminar flow of reactant species (fuel and oxidant) to eliminate the electrol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-06, Vol.14 (12), p.3381
Hauptverfasser: Tanveer, Muhammad, Kim, Kwang-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membraneless microfluidic fuel cells (MMFCs) are being studied extensively as an alternative to batteries and conventional membrane fuel cells because of their simple functioning and lower manufacturing cost. MMFCs use the laminar flow of reactant species (fuel and oxidant) to eliminate the electrolyte membrane, which has conventionally been used to isolate anodic and cathodic half-cell reactions. This review article summarizes the MMFCs with six major categories of flow configurations that have been reported from 2002 to 2020. The discussion highlights the critical factors that affect and limit the performance of MMFCs. Since MMFCs are diffusion-limited, most of this review focuses on how different flow configurations act to reduce or modify diffusive mixing and depletion zones to enhance the power density output. Research opportunities are also pointed out, and the challenges in MMFCs are suggested to improve cell performance and make them practical in the near future.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14123381