Existence of ground state for coupled system of biharmonic Schrödinger equations
In this paper we consider the following system of coupled biharmonic Schrödinger equations \begin{document}$ \begin{equation*} \ \left\{ \begin{aligned} \Delta^{2}u+\lambda_{1}u = u^{3}+\beta u v^{2}, \\ \Delta^{2}v+\lambda_{2}v = v^{3}+\beta u^{2}v, \end{aligned} \right. \end{equation*} $\end{doc...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2022, Vol.7 (3), p.3719-3730 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider the following system of coupled biharmonic Schrödinger equations
\begin{document}$ \begin{equation*} \ \left\{ \begin{aligned} \Delta^{2}u+\lambda_{1}u = u^{3}+\beta u v^{2}, \\ \Delta^{2}v+\lambda_{2}v = v^{3}+\beta u^{2}v, \end{aligned} \right. \end{equation*} $\end{document}
where $ (u, v)\in H^{2}({\mathbb{R}}^{N})\times H^2(\mathbb R^N) $, $ 1\leq N\leq7 $, $ \lambda_{i} > 0 (i = 1, 2) $ and $ \beta $ denotes a real coupling parameter. By Nehari manifold method and concentration compactness theorem, we prove the existence of ground state solution for the coupled system of Schrödinger equations. Previous results on ground state solutions are obtained in radially symmetric Sobolev space $ H_r^2(\mathbb R^N)\times H_r^2(\mathbb R^N) $. When $ \beta $ satisfies some conditions, we prove the existence of ground state solution in the whole space $ H^2(\mathbb R^N)\times H^2(\mathbb R^N) $. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022206 |