Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis

The small medium large system (SMLsystem) is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH) for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2013-09, Vol.6 (9), p.4639-4659
Hauptverfasser: Zamora-Martínez, Francisco, Romeu, Pablo, Botella-Rocamora, Paloma, Pardo, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The small medium large system (SMLsystem) is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH) for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neural networks (ANNs), which is able to predict indoor temperature in the near future using captured data by a complex monitoring system as the input. A study of the impact on forecasting performance of different covariate combinations is presented in this paper. Additionally, a comparison of ANNs with the standard statistical forecasting methods is shown. The research in this paper has been focused on forecasting the indoor temperature of a house, as it is directly related to HVAC—heating, ventilation and air conditioning—system consumption. HVAC systems at the SMLsystem house represent 53:89% of the overall power consumption. The energy used to maintain temperature was measured to be 30%–38:9% of the energy needed to lower it. Hence, these forecasting measures allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show a high forecasting accuracy and therefore, they might be used to efficiently control an HVAC system.
ISSN:1996-1073
1996-1073
DOI:10.3390/en6094639