2-Dimension Linguistic Bonferroni Mean Aggregation Operators and Their Application to Multiple Attribute Group Decision Making

The aim of this paper is to provide a multiple attribute group decision making (MAGDM) method based on the 2-dimension linguistic weight Bonferroni mean aggregation (2DLWBMA) operator. Firstly, the new operations of 2-dimension linguistic variables are defined. Then, the 2-dimension linguistic Bonfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational intelligence systems 2019-01, Vol.12 (2), p.1557-1574
Hauptverfasser: Zhao, Jianbin, Zhu, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to provide a multiple attribute group decision making (MAGDM) method based on the 2-dimension linguistic weight Bonferroni mean aggregation (2DLWBMA) operator. Firstly, the new operations of 2-dimension linguistic variables are defined. Then, the 2-dimension linguistic Bonferroni mean aggregation operator is proposed to describe the correlations of input arguments. Subsequently, the 2DLWBMA operator is investigated to consider the importance of attributes. Furthermore, a novel MAGDM method is introduced and two illustrative examples are given.
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.2991/ijcis.d.191125.001